direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Subjective assessment and instrumental prediction of mobile online gaming on the basis of perceptual dimensions

Motivation

The assessment of the perceived quality of the user (Quality of Experience) of pure audio and video material differs in many ways from the quality of computer games. The later possess a variety of factors due to their interactive nature. Not only factors of complex and innovative game systems have an impact on the QoE, but also the players themselves. A quality judgment, that results by comparing the expected and perceived composition of an entity, depends highly on the preferences, expectations and abilities of the player.

In this still young area of research standard methods for determining the QoE are not directly applicable. This is apparent since in a task oriented human-computer interaction the goal should be achieved with minimal effort. However in a game  the player exerts an effort in order to influence the outcome and thereby feels emotionally attached. Thus new concepts such as immersion and flow, a state of happiness while being in an equilibrium between competence and challenge, appear.

An analysis of the gaming market shows, that the proportion of mobile games has risen sharply in recent years. Mobile games are special in a sense that mobile devices such as smartphones or tablets were originally not designed for games and are therefore not optimally adapted to them. This also applies to the new concept of cloud gaming, where the entire game is executed on a server and only the video and audio material is transferred to the end user.

 

Aim of the project

The aim of this research project is to develop methods to assess the QoE of mobile games. In addition, based on a database containing subjective quality judgments, a model similar to the well known E-model should be constructed to predict the QoE. The following concrete steps are planned for this purpose:

  • Set up and modification of a testbed for conducting experiments including a cloud gaming system for mobile games
  • Development of a classification of games to choose representative games and identify system and user factors
  • Building a questionnaire covering a large space of relevant quality dimensions
  • Identification of quality-relevant perceptual dimensions and analysis of their impact on the overall quality
  • Analyzing the performance of current objective metrics which were proposed for different contents and services in mobile gaming
  • Building a QoE model based on game, system and network characteristics as well as user and context factors
Time Frame: 
01/2016 - 06/2019
T-labs Team Members:
Steven Schmidt
Funding by:
Deutsche Forschungsgemeinschaft (DFG)
Project Number:
MO 1038/21-1

List of Publications

Quality Enhancement of Gaming Content using Generative Adversarial Networks
Citation key avanaki2020a
Author Avanaki, Nasim Jamshidi and Zadtootaghaj, Saman and Barman, Nabajeet and Schmidt, Steven and Martini, Maria G. and Möller, Sebastian
Title of Book 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX)
Pages 1–6
Year 2020
ISBN 978-1-7281-5965-2
DOI 10.1109/QoMEX48832.2020.9123074
Location Athlone, Ireland
Month may
Publisher IEEE
Series QoMEX ’20
How Published Fullpaper
Abstract Recently, streaming of gameplay scenes has gained much attention, as evident with the rise of platforms such as Twitch.tv and Facebook Gaming. These streaming services have to deal with many challenges due to the low quality of source materials caused by client devices, network limitations such as bandwidth and packet loss, as well as low delay requirements. Spatial video artifact such as blockiness and blurriness as a result of as video compression or up-scaling algorithms can significantly impact the Quality of Experience of end-users of passive gaming video streaming applications. In this paper, we investigate solutions to enhance the video quality of compressed gaming content. Recently, several super-resolution enhancement techniques using Generative Adversarial Network (e.g., SRGAN) have been proposed, which are shown to work with high accuracy on non-gaming content. Towards this end, we improved the SRGAN by adding a modified loss function as well as changing the generator network such as layer levels and skip connections to improve the flow of information in the network, which is shown to improve the perceived quality significantly. In addition, we present a performance evaluation of improved SRGAN for the enhancement of frame quality caused by compression and rescaling artifacts for gaming content encoded in multiple resolution-bitrate pairs.
Link to publication Link to original publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe