direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publications

Improving Cross Database Prediction of Dialogue Quality Using Mixture of Experts
Zitatschlüssel engelbrecht2010c
Autor Engelbrecht, Klaus-Peter and Ketabdar, Hamed and Möller, Sebastian
Buchtitel Proceedings of Interspeech 2010
Seiten 1337–1340
Jahr 2010
ISSN 1990-9772
Ort Makuhari, Chiba, Japan
Monat sep
Verlag ISCA
Wie herausgegeben full
Zusammenfassung Models for the prediction of user judgments from interaction data can be used in different contexts such as system quality assessment, monitoring of deployed systems, or as a reward function in learned dialog managers. Such models still show a considerable lack with respect to their generalizability [6]. This paper specifically addresses this issue. We propose to use a Mixture of Experts approach for cross-database predictions. In Mixture of Experts, several classifiers are trained on subsets of the data showing specific characteristics. Predictions of each expert model are combined for the overall prediction result. We show that such an approach can improve the cross-database prediction accuracy.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe