Inhalt des Dokuments
zur Navigation
Dr.-Ing. Jan-Niklas Voigt-Antons
Jan-Niklas Voigt-Antons joined the Telekom Innovation Laboratories as a research scientist in January 2009 and is working there since 2014 as a senior research scientist. He received his diploma in psychology in 2008 from the Technische Universität Darmstadt, Germany, a Doctor-of-Engineering degree in 2014 from the Technische Universität Berlin, Germany and has been doing research at the Quality and Usability Lab at the Technische Universität (TU) Berlin, since. His research interests are in Quality-of-Experience evaluation and its physiological correlates with an emphasis on media transmissions and human-machine-interaction, including neural processing of multimodal interaction. During summer 2012 he was visiting researcher at MuSAE Lab (INRS-EMT), Canada where he examined neural correlates of quality perception for complex speech signals. In spring 2014 he was visiting researcher at the department of psychology of NTNU, Norway where he examined neural correlates of audiovisual asynchrony.
QULab research group: Quality, User Experience, Augmented and Virtual Reality
Research Topics:
• Multimedia Experience (Usability evaluation methods, Quality-of-Experience evaluation physiological measures)
• Interaction Design (Adaptive software, data mining, sensor and behavioural data)
Current projects:
Measuring of immersive media experience
DemTab - Tabletgestützte ambulante Versorgung von Menschen mit Demenz
VoiceAdapt - Adaptives Sprachtraining für ältere Menschen mit Aphasie
OurPuppet - Pflegeunterstützung mit einer interaktiven Puppe für informell Pflegende
Past projects:
PflegeTab - Technik für mehr Lebensqualität trotz Pflegebedürftigkeit bei Demenz (GKV)
Bernstein Focus Neurotechnology - Berlin (BFNT - B)
Teaching:
Seminar | Affective Computing |
Project | Neuro-Usability |
Project | Study Project Quality & Usability (6/9 CP) |
Thesis:
Current thesis offers of our lab can be found here. Please contact me via email if you are interested in doing a thesis supervised by me.
Jobs:
Current job offers of our lab can be found here.
Contact:
+49 30 8353 58 377
Address
Technische Univertistät BerlinQuality and Usability Lab
Telekom Innovation Laboratories
Ernst-Reuter-Platz 7
10587 Berlin, Germany
Publications
Zitatschlüssel | uhrig2019a |
---|---|
Autor | Uhrig, Stefan and Mittag, Gabriel and Möller, Sebastian and Voigt-Antons, Jan-Niklas |
Seiten | 036009 |
Jahr | 2019 |
ISSN | 1741-2552 |
DOI | 10.1088/1741-2552/aaf122 |
Journal | Journal of Neural Engineering |
Jahrgang | 16 |
Nummer | 3 |
Monat | mar |
Notiz | electronic, online |
Verlag | IOP Publishing |
Wie herausgegeben | Fullpaper |
Zusammenfassung | Objective. By means of subjective psychophysical methods, quality of transmitted speech has been decomposed into three perceptual dimensions named ‚discontinuity‚ (F), ‚noisiness‚ (N) and ‚coloration‚ (C). Previous studies using electroencephalography (EEG) already reported effects of perceived intensity of single quality dimensions on electrical brain activity. However, it has not been investigated so far, whether the dimensions themselves are dissociable on a neurophysiological level of analysis. Approach. Pursuing this goal in the present study, a high-quality (HQ) recording of a spoken word was degraded on each dimension at a time, resulting in three quality-impaired stimuli (F, N, C) which were on average described as being equal in perceived degradation intensity. Participants performed a three-stimulus oddball task, involving the serial presentation of different stimulus types: (1) HQ or degraded ‚standard‚ stimuli to establish sensory/perceptual quality references. (2) Degraded ‚oddball‚ stimuli to cause random, infrequent deviations from those references. EEG was employed to examine the neuro-electrical correlates of speech quality perception. Main results. Emphasis was placed on modulations in temporal and morphological characteristics of the P300 component of the event-related brain potential (ERP), whose subcomponents P3a and P3b are commonly linked to attentional orienting and task relevance categorization, respectively. Electrophysiological data analysis revealed significant modulations of P300 amplitude and latency by the perceptual dimensions underlying both quality references and oddball stimuli. Significance. The present study exemplifies the utility of physiological methods like EEG for dissociating speech degradations not only based on perceived intensity level, but also their distinctive quality dimension. |