direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Dr. Tim Polzehl

Lupe

Crowdsourcing Technologie 

  • High-Quality Datenerhebung mittels Crowdsourcing
  • Datenmanagement und Datenservices durch Crowdsourcing (clean, index, verify, tag, label, translate, summarize, join, etc. )
  • Datensynthese und Datengenerierung durch Crowdsourcing
  • Subjektive Einflüsse und Bias-Normalisierung im Crowdsourcing
  • Crowd-Creation, Crowd-Voting, Crowd-Storming, Crowd-Testing Applikationen
  • Crowdsourcing Service für Maschinelles Lernen und BI
  • Crowdsourcing Business und Business Logic
  • Komplexe automatisierte Workflows: Kombination menschlicher und künstlicher Intelligenz
  • Crowdsourcing mit mobile Endgeräten
  • Real-time Crowdsourcing
  • Skill-based Crowdsourcing und Verifikation von Crowd-Experten

 

Sprachtechnologie 

  • Automatische Benutzerklassifizierung anhand Sprache
  • Automatische Sprechercharakterisierung (Alter, Geschlecht, Emotionen, Persönlichkeit) 
  • Automatische Spracherkennung (ASR), Prosodie- und Voice Gesture Erkennung
  • Analyse stimmlicher Ausdrucksformen, Phonetische Sprachanalyse
  • App Entwicklung für Sprachanwendungen (Android, iOS)

 

Textklassifikation, Natural Language Processing (NLP)  

  • Sentiment Analyse
  • Affektive Analyse, Emotionen
  • Personality und Lifestyle Detection aus Social-Media (Twitter, FB, G+, etc.)

 

Maschinelles Lernen, Künstliche Intelligenz 

  • Automatische Nutzermodellierung
  • Klassifikation und Vorhersage mittels linearer und nicht-linearer Algorithmen
  • Selektions- und Reduktionsverfahren
  • Evaluations und Verifikationsverfahren


Biographie:

Tim Polzehl studierte eine Kombination aus Kommunikationswissenschaften an der Technischen Universität Berlin und Amerikanistik an der Humboldt Universität zu Berlin. Der Fokus der Studien lag dabei auf einer Verbindung aus linguistischem Sprachwissen mit Kenntnissen zur Signalanalyse und Parameterextraktion. Damit wurde eine umfassende Analyse von Sprachdaten hinsichtlich der Interpretation von Sprach- und Sprach-Metadaten ermöglicht. Zusätzlich erarbeitete er sich Kenntnisse im Bereich des Maschinellen Lernens und der Künstliche Intelligenz, die zur Erstellung einer eigenen Software zur automatischen Emotionserkennung als Abschlussarbeit seiner Studien führte. 

2008 trat Tim Polzehl eine Stelle als Doktorand an den Deutsche Telekom Laboratories (T-Labs) und dem Quality and Usability Lab an und arbeitete sowohl in industrienahen als auch in forschungsnahen Projekten zur Sprachtechnologie, App-Entwicklung, im Bereich Machine Learning und im Bereich der Crowdsourcing Entwürfe und Lösungen.

2011-2013 leitete Tim ein F&E Entwicklungsprojekt der Telekom Innovation Laboratories in Bereich Intelligente Customer-Care Systeme und Sprach-Apps.

2012-2014 nahm Tim an einer BMBF geförderten Führungskräfteausbildung mit u.a. SAP, Software AG, Scheer Group, Siemens, Holtzbrinck, Bosch, Datev und Deutsche Telekom AG sowie weiteren universitären Spitzeneinrichtungen teil (Softwarecampus).       

2014 erlangte Tim den Doktortitel zum Thema der automatische Persönlichkeitsvorhersage aus Nutzerdaten.

Seit 2014 ist Tim Postdoc am Lehrstuhl für Quality and Usability, leitet die Next-Generation Crowdsourcing Gruppe, berteut und akquiriert die Projekte der Gruppe, und betreut die Ausgründung der eigenentwickelten Crowd-Lösung Crowdee.

Seit 2015 ist Tim zusätzlich Projektleiter am EIT-Digital für EU-weite Softwareinnovationsprojekte mit Partnern aus Wissenschaft und Industrie. 

 

Laufende und abgeschlossene Projekte

    Bitte hier klicken

     


    Adresse:

    Quality and Usability Labs

    Technische Universität Berlin

    Ernst-Reuter-Platz 7

    D-10587 Berlin


    Tel.:+49 (30) 8353-58227
    Fax: +49 (30) 8353-58409

    Openings / Supervision

    aktuelle Ausschreibungen befinden sich hier.

    Publications

    Crowdsourcing versus the laboratory: towards crowd-based linguistic text quality assessment of query-based extractive summarization
    Zitatschlüssel iskender2020a
    Autor Iskender, Neslihan and Polzehl, Tim and Möller, Sebastian
    Buchtitel Proceedings of the Conference on Digital Curation Technologies (Qurator 2020)
    Seiten 1–16
    Jahr 2020
    Adresse Berlin, Germany
    Monat jan
    Notiz online
    Verlag CEUR
    Serie QURATOR
    Wie herausgegeben Fullpaper
    Zusammenfassung Curating text manually in order to improve the quality of automatic natural language processing tools can become very time consuming and expensive. Especially, in the case of query-based extractive online forum summarization, curating complex information spread along multiple posts from multiple forum members to create a short meta-summary that answers a given query is a very challenging task. To overcome this challenge, we explore the applicability of microtask crowdsourcing as a fast and cheap alternative for query-based extractive text summarization of online forum discussions. We measure the linguistic quality of crowd-based forum summarizations, which is usually conducted in a traditional laboratory environment with the help of experts, via comparative crowdsourcing and laboratory experiments. To our knowledge, no other study considered query-based extractive text summarization and summary quality evaluation as an application area of the microtask crowdsourcing. By conducting experiments both in crowdsourcing and laboratory environments, and comparing the results of linguistic quality judgments, we found out that microtask crowdsourcing shows high applicability for determining the factors overall quality, grammaticality, non-redundancy, referential clarity, focus, and structure & coherence. Further, our comparison of these findings with a preliminary and initial set of expert annotations suggest that the crowd assessments can reach comparable results to experts specifically when determining factors such as overall quality and structure & coherence mean values. Eventually, preliminary analyses reveal a high correlation between the crowd and expert ratings when assessing low-quality summaries.
    Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

    BibTeX Upload

    Upload BibTeX

    Zusatzinformationen / Extras

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe