direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Dr. Tim Polzehl

Lupe

Crowdsourcing Technologie 

  • High-Quality Datenerhebung mittels Crowdsourcing
  • Datenmanagement und Datenservices durch Crowdsourcing (clean, index, verify, tag, label, translate, summarize, join, etc. )
  • Datensynthese und Datengenerierung durch Crowdsourcing
  • Subjektive Einflüsse und Bias-Normalisierung im Crowdsourcing
  • Crowd-Creation, Crowd-Voting, Crowd-Storming, Crowd-Testing Applikationen
  • Crowdsourcing Service für Maschinelles Lernen und BI
  • Crowdsourcing Business und Business Logic
  • Komplexe automatisierte Workflows: Kombination menschlicher und künstlicher Intelligenz
  • Crowdsourcing mit mobile Endgeräten
  • Real-time Crowdsourcing
  • Skill-based Crowdsourcing und Verifikation von Crowd-Experten

 

Sprachtechnologie 

  • Automatische Benutzerklassifizierung anhand Sprache
  • Automatische Sprechercharakterisierung (Alter, Geschlecht, Emotionen, Persönlichkeit) 
  • Automatische Spracherkennung (ASR), Prosodie- und Voice Gesture Erkennung
  • Analyse stimmlicher Ausdrucksformen, Phonetische Sprachanalyse
  • App Entwicklung für Sprachanwendungen (Android, iOS)

 

Textklassifikation, Natural Language Processing (NLP)  

  • Sentiment Analyse
  • Affektive Analyse, Emotionen
  • Personality und Lifestyle Detection aus Social-Media (Twitter, FB, G+, etc.)

 

Maschinelles Lernen, Künstliche Intelligenz 

  • Automatische Nutzermodellierung
  • Klassifikation und Vorhersage mittels linearer und nicht-linearer Algorithmen
  • Selektions- und Reduktionsverfahren
  • Evaluations und Verifikationsverfahren


Biographie:

Tim Polzehl studierte eine Kombination aus Kommunikationswissenschaften an der Technischen Universität Berlin und Amerikanistik an der Humboldt Universität zu Berlin. Der Fokus der Studien lag dabei auf einer Verbindung aus linguistischem Sprachwissen mit Kenntnissen zur Signalanalyse und Parameterextraktion. Damit wurde eine umfassende Analyse von Sprachdaten hinsichtlich der Interpretation von Sprach- und Sprach-Metadaten ermöglicht. Zusätzlich erarbeitete er sich Kenntnisse im Bereich des Maschinellen Lernens und der Künstliche Intelligenz, die zur Erstellung einer eigenen Software zur automatischen Emotionserkennung als Abschlussarbeit seiner Studien führte. 

2008 trat Tim Polzehl eine Stelle als Doktorand an den Deutsche Telekom Laboratories (T-Labs) und dem Quality and Usability Lab an und arbeitete sowohl in industrienahen als auch in forschungsnahen Projekten zur Sprachtechnologie, App-Entwicklung, im Bereich Machine Learning und im Bereich der Crowdsourcing Entwürfe und Lösungen.

2011-2013 leitete Tim ein F&E Entwicklungsprojekt der Telekom Innovation Laboratories in Bereich Intelligente Customer-Care Systeme und Sprach-Apps.

2012-2014 nahm Tim an einer BMBF geförderten Führungskräfteausbildung mit u.a. SAP, Software AG, Scheer Group, Siemens, Holtzbrinck, Bosch, Datev und Deutsche Telekom AG sowie weiteren universitären Spitzeneinrichtungen teil (Softwarecampus).       

2014 erlangte Tim den Doktortitel zum Thema der automatische Persönlichkeitsvorhersage aus Nutzerdaten.

Seit 2014 ist Tim Postdoc am Lehrstuhl für Quality and Usability, leitet die Next-Generation Crowdsourcing Gruppe, berteut und akquiriert die Projekte der Gruppe, und betreut die Ausgründung der eigenentwickelten Crowd-Lösung Crowdee.

Seit 2015 ist Tim zusätzlich Projektleiter am EIT-Digital für EU-weite Softwareinnovationsprojekte mit Partnern aus Wissenschaft und Industrie. 

 

Laufende und abgeschlossene Projekte

    Bitte hier klicken

     


    Adresse:

    Quality and Usability Labs

    Technische Universität Berlin

    Ernst-Reuter-Platz 7

    D-10587 Berlin


    Tel.:+49 (30) 8353-58227
    Fax: +49 (30) 8353-58409

    Openings / Supervision

    aktuelle Ausschreibungen befinden sich hier.

    Publications

    Towards a Reliable and Robust Methodology for Crowd-Based Subjective Quality Assessment of Query-Based Extractive Text Summarization
    Zitatschlüssel iskender2020b
    Autor Iskender, Neslihan and Polzehl, Tim and Möller, Sebastian
    Buchtitel Proceedings of The 12th Language Resources and Evaluation Conference
    Seiten 245–253
    Jahr 2020
    Ort Marseille, France
    Adresse Paris, France
    Monat may
    Notiz online
    Verlag European Language Resources Association (ELRA)
    Serie LREC
    Wie herausgegeben Fullpaper
    Zusammenfassung The intrinsic and extrinsic quality evaluation is an essential part of the summary evaluation methodology usually conducted in a traditional controlled laboratory environment. However, processing large text corpora using these methods reveals expensive from both the organizational and the financial perspective. For the first time, and as a fast, scalable, and cost-effective alternative, we propose micro-task crowdsourcing to evaluate both the intrinsic and extrinsic quality of query-based extractive text summaries. To investigate the appropriateness of crowdsourcing for this task, we conduct intensive comparative crowdsourcing and laboratory experiments, evaluating nine extrinsic and intrinsic quality measures on 5-point MOS scales. Correlating results of crowd and laboratory ratings reveals high applicability of crowdsourcing for the factors overall quality, grammaticality, non-redundancy, referential clarity, focus, structure & coherence, summary usefulness, and summary informativeness. Further, we investigate the effect of the number of repetitions of assessments on the robustness of mean opinion score of crowd ratings, measured against the increase of correlation coefficients between crowd and laboratory. Our results suggest that the optimal number of repetitions in crowdsourcing setups, in which any additional repetitions do no longer cause an adequate increase of overall correlation coefficients, lies between seven and nine for intrinsic and extrinsic quality factors.
    Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

    BibTeX Upload

    Upload BibTeX

    Zusatzinformationen / Extras

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe