direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Dr. Tim Polzehl

Lupe

Crowdsourcing Technologie 

  • High-Quality Datenerhebung mittels Crowdsourcing
  • Datenmanagement und Datenservices durch Crowdsourcing (clean, index, verify, tag, label, translate, summarize, join, etc. )
  • Datensynthese und Datengenerierung durch Crowdsourcing
  • Subjektive Einflüsse und Bias-Normalisierung im Crowdsourcing
  • Crowd-Creation, Crowd-Voting, Crowd-Storming, Crowd-Testing Applikationen
  • Crowdsourcing Service für Maschinelles Lernen und BI
  • Crowdsourcing Business und Business Logic
  • Komplexe automatisierte Workflows: Kombination menschlicher und künstlicher Intelligenz
  • Crowdsourcing mit mobile Endgeräten
  • Real-time Crowdsourcing
  • Skill-based Crowdsourcing und Verifikation von Crowd-Experten

 

Sprachtechnologie 

  • Automatische Benutzerklassifizierung anhand Sprache
  • Automatische Sprechercharakterisierung (Alter, Geschlecht, Emotionen, Persönlichkeit) 
  • Automatische Spracherkennung (ASR), Prosodie- und Voice Gesture Erkennung
  • Analyse stimmlicher Ausdrucksformen, Phonetische Sprachanalyse
  • App Entwicklung für Sprachanwendungen (Android, iOS)

 

Textklassifikation, Natural Language Processing (NLP)  

  • Sentiment Analyse
  • Affektive Analyse, Emotionen
  • Personality und Lifestyle Detection aus Social-Media (Twitter, FB, G+, etc.)

 

Maschinelles Lernen, Künstliche Intelligenz 

  • Automatische Nutzermodellierung
  • Klassifikation und Vorhersage mittels linearer und nicht-linearer Algorithmen
  • Selektions- und Reduktionsverfahren
  • Evaluations und Verifikationsverfahren


Biographie:

Tim Polzehl studierte eine Kombination aus Kommunikationswissenschaften an der Technischen Universität Berlin und Amerikanistik an der Humboldt Universität zu Berlin. Der Fokus der Studien lag dabei auf einer Verbindung aus linguistischem Sprachwissen mit Kenntnissen zur Signalanalyse und Parameterextraktion. Damit wurde eine umfassende Analyse von Sprachdaten hinsichtlich der Interpretation von Sprach- und Sprach-Metadaten ermöglicht. Zusätzlich erarbeitete er sich Kenntnisse im Bereich des Maschinellen Lernens und der Künstliche Intelligenz, die zur Erstellung einer eigenen Software zur automatischen Emotionserkennung als Abschlussarbeit seiner Studien führte. 

2008 trat Tim Polzehl eine Stelle als Doktorand an den Deutsche Telekom Laboratories (T-Labs) und dem Quality and Usability Lab an und arbeitete sowohl in industrienahen als auch in forschungsnahen Projekten zur Sprachtechnologie, App-Entwicklung, im Bereich Machine Learning und im Bereich der Crowdsourcing Entwürfe und Lösungen.

2011-2013 leitete Tim ein F&E Entwicklungsprojekt der Telekom Innovation Laboratories in Bereich Intelligente Customer-Care Systeme und Sprach-Apps.

2012-2014 nahm Tim an einer BMBF geförderten Führungskräfteausbildung mit u.a. SAP, Software AG, Scheer Group, Siemens, Holtzbrinck, Bosch, Datev und Deutsche Telekom AG sowie weiteren universitären Spitzeneinrichtungen teil (Softwarecampus).       

2014 erlangte Tim den Doktortitel zum Thema der automatische Persönlichkeitsvorhersage aus Nutzerdaten.

Seit 2014 ist Tim Postdoc am Lehrstuhl für Quality and Usability, leitet die Next-Generation Crowdsourcing Gruppe, berteut und akquiriert die Projekte der Gruppe, und betreut die Ausgründung der eigenentwickelten Crowd-Lösung Crowdee.

Seit 2015 ist Tim zusätzlich Projektleiter am EIT-Digital für EU-weite Softwareinnovationsprojekte mit Partnern aus Wissenschaft und Industrie. 

 

Laufende und abgeschlossene Projekte

    Bitte hier klicken

     


    Adresse:

    Deutsche Telekom Laboratories

    Quality and Usability Labs / TU-Berlin

    Ernst-Reuter-Platz 7

    D-10587 Berlin


    Tel.:+49 (30) 8353-58227
    Fax: +49 (30) 8353-58409
    http://www.telekom.de/laboratories

    Publications

    B

    Barz, Michael and Büyükdemircioglu, Neslihan and Prasad Surya, Rikhu and Polzehl, Tim and Sonntag, Daniel (2018). Device-Type Influence in Crowd-based Natural Language Translation Tasks. Proceedings of the 1st Workshop on Subjectivity, Ambiguity and Disagreement (SAD) in Crowdsourcing 2018, and the 1st Workshop CrowdBias'18: Disentangling the Relation Between Crowdsourcing and Bias Management, 93–97.

    Link zur Publikation Link zur Originalpublikation

    Barz, Michael and Polzehl, Tim and Sonntag, Daniel (2018). Towards Hybrid Human-Machine Translation Services. EasyChair Preprint no. 333

    Link zur Originalpublikation



    Black, Alan and Bunnell, H Timothy and Dou, Ying and Muthukumar, Prasanna Kumar and Perry, Daniel and Polzehl, Tim and Prahallad, Kishore and Vaughn, Callie and Steidl, S. (2012). ARTICULATORY FEATURES FOR EXPRESSIVE SPEECH SYNTHESIS. In Proc. ICASSP 2012. IEEE.

    Link zur Originalpublikation

    Burkhardt, Felix and Ballegooy, Markus van and Engelbrecht, Klaus-Peter and Polzehl, Tim and Stegmann, Joachim (2009). Emotion Detection in Dialog Systems: Applications, Strategies and Challenges. Proc. of International Conference on Affective Computing and Intelligent Interaction (ACII 2009). IEEE.

    Link zur Originalpublikation

    Burkhardt, Felix and Polzehl, Tim and Stegmann, Joachim and Metze, Florian and Huber, Richard (2009). Detecting Real Life Anger. Proc. of International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2009). IEEE, 4761–4764.


    D

    Dimitrov, Todor and Kramps, Oliver and Naroska, Edwin and Bolten, Tobias and Demmer, Julia and Ressel, Christian and Könen, Stefan and Polzehl, Tim and Voigt-Antons, Jan-Niklas and Matthies, Olaf and Habibi, Amir and Heutelbeck, Dominic and Mertens, Jana and Matip, Eva-Maria (2018). „OurPuppet“ – Entwicklung einer Mensch-Technik-Interaktion für die Unterstützung informell Pflegender. Zukunft der Pflege Tagungsband der 1. Clusterkonferenz 2018. BIS, 78–84.

    Link zur Originalpublikation

    H

    Hinterleitner, Florian and Möller, Sebastian and Polzehl, Tim and Falk, Tiago H. (2010). Comparison of Approaches for Instrumentally Predicting the Quality of Text-to-Speech Systems: Data from Blizzard Challenges 2008 and 2009. Proceedings of the Blizzard Challenge Workshop. International Speech Communication Association (ISCA), 1–7.

    Link zur Publikation

    I

    Iskender, Neslihan and Gabryszak, Aleksandra and Polzehl, Tim and Hennig, Leonhard and Möller, Sebastian (2019). A Crowdsourcing Approach to Evaluate the Quality of Query-based Extractive Text Summaries. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 1–3.

    Link zur Publikation

    K

    Ketabdar, Hamed and Polzehl, Tim (2009). Fall and Emergency Detection with Mobile Phones. Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS'09). ACM New York, NY, USA textcopyright2009, 241–242.


    Ketabdar, Hamed and Polzehl, Tim (2009). Enhancing Security and Emergency Functionalities in Mobile Phones by Audio and Movement Analysis. Proceedings of the 11th International Conference on Ubiquitous Computing (UBICOMP'09)


    Ketabdar, Hamed and Polzehl, Tim (2009). Tactile and Visual Alerts for Deaf People by Mobile Phones. Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS'09). ACM New York, NY, USA textcopyright2009, 253–254.


    Köster, Friedemann and Mittag, Gabriel and Polzehl, Tim and Möller, Sebastian (2016). Non-intrusive Estimation of Noisiness as a Perceptual Quality Dimension of Transmitted Speech. 5th ISCA/DEGA Workshop on Perceptual Quality of Systems (PQS 2016). ISCA/DEGA, 74-78.

    Link zur Publikation

    M

    Metze, F. and Polzehl, Tim and Black, Alan (2011). A Review of Personality in Voice-Based Man Machine Interaction. Human-Computer Interaction. Interaction Techniques and Environments - 14th International Conference, HCI International 2011. Springer, 358–367.


    BibTeX Upload

    Upload BibTeX

    Zusatzinformationen / Extras

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe