TU Berlin

Quality and Usability LabTim Polzehl

Page Content

to Navigation

Dr. Tim Polzehl

Crowdsourcing Technology

  • High-quality data collection via crowdsourcing
  • Data management and data services via crowdsourcing (clean, index, verify, tag, label, translate, summarize, join, etc. )
  • Data synthesis und data generation via crowdsourcing
  • Subjective influences and bias normalization in crowdsourcing
  • Crowd-creation, crowd-voting, crowd-storming, crowd-testing applications
  • Crowdsourcing service for machine learning and BI
  • Crowdsourcing business and Business Logic
  • Complex automated workflows: combining human and artificial intelligence
  • Crowdsourcing with mobile devices
  • Real-time crowdsourcing
  • Skill-based crowdsourcing and verification of crowd-experts

 

Speech Technology

  • Automatic user classification
  • Automatic speaker characterization (age, gender, emotion, personality) 
  • Automatic speech recognition (ASR),
  • Prosody and voice gesture recognition
  • Prosodic voice print analysis, phonetic science
  • App development with speech functionalities (Android, iOS)

 

Text Classification, Natural Language Processing (NLP)  

  • Sentiment Analysis
  • Affective Analysis, Emotion
  • Personality und Lifestyle Detection from Social-Networks (Twitter, FB, G+, etc.)

 

Machine Learning and Artificial Intelligence  

  • Automated user modelling
  • Classification and prediction systems using linear and non-linear algorithms
  • Feature selection and reduction
  • Evaluation and verification methods

 

Running and Past Projects:

please click here.

 

 


Project Biography 

Tim Polzehl studied Science of Communication at Berlin's Technical University. Combining linguistic knowledge with signal processing skills he focused on speech interpretation and automatic data- and metadata extraction. He gathered experience within the field of machine learning as exercised when recognizing human speech utterances and classifying emotional expression subliminal in speech, the latter of which became his M.A. thesis. 

In 2008 Tim Polzehl started his position as PhD candidate in Telekom Innovation Laboratories (T-Labs) and the Quality and Usability Lab. He worked in both industrial and academic projects with focus on speech technology, App-Development, machine learning crowd sourcing solutions.

2011-2013 Tim was leading a R&D Project for Telekom Innovation Laboratories with Applications in the field of Intelligent Customer-Care Systems and Speech-Apps.

2012-2014 Tim was awarded with an BMBF funded Education program for future IT and Development Leadership involving SAP, Software AG, Scheer Group, Siemens, Holtzbrinck, Bosch, Datev and Deutsche Telekom AG, amongst highly ranked academic institution (Softwarecampus).       

2014 Tim was awarded the PhD for his work on automatic prediction of personality attributes from speech.

Since 2014 Tim has been working as a Postdoc at the Quality and Usability chair of TU-Berlin. At the same time Tim is driving the start-up activity applying the earlier  development of crowdsourcing solutions Crowdee.

 

Address:

Quality and Usability Labs

Technische Universität Berlin

Ernst-Reuter-Platz 7

D-10587 Berlin

Tel.:+49 (30) 8353-58227Fax: +49 (30) 8353-58409




Openings / Supervision

please refer to here.

Publications

Development and Validation of Extrinsic Motivation Scale for Crowdsourcing Micro-task Platforms
Citation key naderi2014b
Author Naderi, Babak and Wechsung, Ina and Polzehl, Tim and Möller, Sebastian
Title of Book Proceedings of the 2014 International ACM Workshop on Crowdsourcing for Multimedia
Pages 31–36
Year 2014
ISBN 978-1-4503-3128-9
DOI 10.1145/2660114.2660122
Location Orlando, Florida, USA
Address New York, NY, USA
Month nov
Publisher ACM
Series CrowdMM '14
How Published full
Abstract In this paper, we introduce a scale for measuring the extrinsic motivation of crowd workers. The new questionnaire is strongly based on the Work Extrinsic Intrinsic Motivation Scale (WEIMS) [17] and theoretically follows the Self-Determination Theory (SDT) of motivation. The questionnaire has been applied and validated in a crowdsourcing micro-task platform. This instrument can be used for studying the dynamics of extrinsic motivation by taking into account individual differences and provide meaningful insights which will help to design a proper incentives framework for each crowd worker that eventually leads to a better performance, an increased well-being, and higher overall quality.
Link to publication Download Bibtex entry

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe